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Annual Summary Report

Statistical Inference for Quality-Adjusted Survival Time

Hongwei Zhao, Sc.D

a. Introduction

In studies of treatment options for breast cancers, it is desirable to find a treatment
that not only prolongs the overall survival life, but also improves the quality of life
(QOL). Quality-adjusted lifetime (QAL) is a measure that combines both the quality
and the quantity of a person’s lifetime. First proposed by Gelber, Gelman and Gold-
hirsch (1989), QAL is simply an integration of survival time weighted by a utility
coefficient ranging from 0 (poor health) to 1 (perfect health). In a typical clinical
trial setting, patients are enrolled over time, and the study ends before observation of
the endpoints for all patients. Therefore, the data are right censored. The goal of my
research is to study how to draw inference about QAL in the presence of censoring.

b. Body

During the grant period from July 2002 to July 2006, I studied the problem of making
statistical inference on the quality adjusted lifetime, when censoring is present. These
problems include (1) Estimating survival functions of QAL (2) Testing the equality
of two survival functions of QAL. (3) Testing the equality of survival functions of
QAL from three or more groups. (4) Developing regression methods for evaluating
the effects of covariates on QAL.

b.1. The Setting

For the ith individual in the study, let’s define V;(¢),t > 0, as a continuous time
stochastic process representing the patient’s health history process, 7; as the survival
time. U is a utility function, which is assumed to be known or can be specified. Denote
V:H(t) as the health history information up to time ¢, i.e. V7 (t) = {Vi(u) : u < t}.
The ¢th individual’s quality adjusted lifetime, denoted as @);, is equal to

Q= [ Ui

0

Let Z; denote the p 4+ 1 vector of covariates associated with the ith individual,
and C; denote the censoring variable. We assume that the censoring variable is
independent of the health history, conditional on the covariates.

Due to the presence of censoring, we cannot make inference on QAL over the entire
health history. We can only consider the QAL accumulated within a time L, where
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L is a time limit up to which we have reasonable amount of data. Our inference
therefore will depend on the choice of L. Consequently, the survival time of a patient
will be truncated at L, that is, 7% = min(7, L). For ease of notation, however, we
still use 7T instead of T* in subsequent development of the theory.

We observe the following data:

X; = min(T}, Cy), Ay = I(T; < C;), Vi(t),0 < t < X;, Zs,

Xi
Qi=/ U(Vi(t)}dt, i=1,--.n.
0

We would like to make inference about the true distribution of @);, and investigate
which covariates affect its distribution.

b.2. Estimating survival functions of quality-adjusted lifetime

A simple weighted estimator for the survival function of Q;, S(z) = Pr(Q; > z),
can be formed by

§WT —n
i= IK( )

where B; = I(Q; > z), K(T}) is the Kaplan-Meier estimator of the survival function
for the censoring variable C, K(T;) = Pr(C > Tj).

Zhao and Tsiatis (1997, 1999) outlined the form for the most efficient estimator
for the survival function of QAL:

dMC ees s Vi ()}~ Gleegy )]

3 — A n-l /
ff ZZI K(T, Z
where M (u) = NF(u) — [y /\C(t)Yi(t)dt, NE(u) = I(X; < u,A; = 0), Yi(t) =
I(X; > t), X°(t) = limy_yo  Pr(t < C < t+h|C >, T > t) is the hazard function for
the censoring distribution. e.;r{V;?(u)} = E{B;|V;¥ (u)}. For any random variable
X, the function G(X,u) is defined as

E{X;I(T; > u)}

G(X,u) = 5r(0)

Here, St(u) = pr(T > u).

Since e.;r{V;¥ (u)} cannot be estimated non-parametrically, we cannot obtain the
most efficient estimator. Instead, our goal is to find an improved estimator, which is
more efficient than the simple weighted estimator:



An improved estimator has been proposed by Zhao and Tsiatis (1999) which has
the following form:

~

Sugle) =7 3o 2 e [T ) - e )

where
e{Vif (u)} = Qi(u),

and

cov | [ - G, [ v ) - e

e [0

C =
Kx>[{V()}—G@Wﬂ

This estimator is asymptotically always more efficient than the simple weighted
estimator. However, with finite sample size, it may not always perform well due to
the fact that the coefficient C' has to be estimated. With simulation studies, we have
found that an improved estimator that is more reliable than this estimator is one that
uses C' = 1. The advantages of this estimator include having a smaller variance with
a small sample size, being easier to calculate, and having a more accurate variance
estimator.

b.3. Testing equality of survival functions of quality-adjusted lifetime

If an influence function for a test statistic exists for complete data case, denoted
as ;, then a test statistic for censored case can be constructed as

a1y~ Lt
;K T (1)

where A; is an indicator whether the subject #’s death is observed, and K (T;) is an
estimator for the survival function for the censoring variable.

Zhao and Tsiatis (2001) proposed a test statistic where 1; is the influence function
of the general logrank test:

* E{ZI1(Qi > u)}
b= [ v [Zz-— BIQ S ar | M),

where Z; is the treatment indicator, (); is the quality adjusted survival time for subject
i, w(u) is any weighting function, M2 (u) = I(Q; < u) — JEA()I(Q; > t)dt, A\9(t)
is the hazard function for @);, which under the null hypothesis is independent of Z;.
They showed that by choosing a certain weight w(u), the test statistic became the




ordinary logrank test when the utility coefficient is equal to 1 everywhere until a
subject’s death.

We have considered other forms of test statistics. One option is to use Pepe
and Fleming (1989) test with censored data, where the survival function for each
treatment can be estimated consistently using methods of Zhao and Tsiatis (1997).
Specifically, the statistic for the difference between integrated quality of life adjusted
survival curves for two treatment groups is:

Vi [[{81(@) - Sy(x) . 2

We found that the relative efficiency of these two test statistics depends highly on
the shape of the survival curves of the QAL and neither one is dominant of the other.

b.4. Testing equality of survival functions of quality-adjusted lifetime for
three or more groups

Both of these tests (??) and (??) can be extended to the case of testing the equality
of QAL from K groups (K > 2). Denote Zi, k =1,---, K —1, to be the test statistics
for K — 1 two-group comparisons, and the estimated variance-covariance matrix of
these statistics is denoted by matrix 3. Then a test statistic for testing the equality
of the K samples can be formed by

(Z17 ) ZKfl)Zil(Zla Tty ZKfl)T-

This test statistic has a chi-squared distribution under the null hypothesis.

Simulations studies showed that the large sample theory works well with finite
sample sizes.

b.5. Regression models for the mean QAL

We assume that the mean QAL depends on the covariates in a very general form:

E(QilZ:) = g(B, Zs), (3)

where §is a (p+ 1) x 1 vector of parameters of interest, and ¢(.) is a known function.
Special cases include ¢g(8, Z;) = p'Z;, a linear regression model and ¢(8, Z;) = g(8'Z;),
a generalized linear regression model.

If complete data are observed, a consistent estimator B for 8 in the mean model
?7?7) can be obtained from the following estimating equation:
g g

n

Sy (8) =Y h(Z:){Qi — g(8,Z))} =0, (4)

i=1



where h(Z;) is (p + 1)-dimensional vector of functions of Z;, and the superscript
F represents models for full data. From the semi-parametric theory (Robins and
Rotnitzky, 1992), we know that the most efficient estimating equation for complete
data case is the one with

W (Z2) = Var (@) 2) 298 2)

aﬂ |ﬁ0’

where [y is the true value of the parameters.

When censoring is present, (); cannot be observed for everybody so the estimat-
ing equation (??) cannot be used. However, using the idea of inverse probability
weighting, which was originally proposed by Horvitz and Thompson (1952), we can
construct a simple weighted estimating equation for 8 in our mean model (??) with
censored data:

Suwr(8) = 3 Z e hZ) Q= 9(6. 70} =0, )

It is easy to show that this estimating equation will produce consistent estimators for

B.

In the above estimating equation, only the data on QAL for the people who have
failures are used, the QAL for censored subjects are ignored. Hence the above esti-
mating equation is not efficient.

From the semi-parametric theory for missing data processes developed by Robins
and Rotnitzky (1992) and Robins et al. (1994), the influence function for the estimat-
ing equation for any regular asymptotic linear (RAL) estimators of Sg can be written
as

D [Tt - 60t e [ evi ) - Gletv ] “H T 6)

where D' = h(Z;){Q; — g(B,Z;)} is the influence function for the complete data,
e{V;¥ (u)} is any (p+1)-dimensional vector of functionals of the health history V. (u).
It should be noted that the influence function for the simple weighted estimating
equation (??) is simply the first two terms of (??) (Zhao and Tsiatis, 1997, equation

AT).

From Robins and Rotnitzky (1992), the most efficient estimating equation is ob-
tained by choosing

ees IV (u)} = E{D; |V (u)} = heps (Z)E{D;|Vi" (u)},
where D; = Q; — g(8, Z;), and

hers(Zi) = {Var(QilZ:) + P(Z:)} 598, Zi)| o,

%



with

o dNF (u)

K ) Var{D;[V;" (u), Yi(u) = 1, Z;}| Z; (7)

P(Zi):E[O

From the above results, the most efficient estimating equation can be formed by

#3° [Teas = Glear Tt =0 )

A;D;h
Sesf(B) = #
i ; R(T)

where G*(W,u) = 1, W;Y;(u)/Y (u) is a consistent estimator for G(W, u), for any
functional W.

Due to the difficulty in obtaining the most efficient estimating equation non-
parametrically, we wish to find an estimating equation which can be obtained from the
observed data, and which can be more efficient than the simple weighted estimating
equation for any choice of h(Z).

We first considered a method for obtaining the improved estimating equation,
which is similar to the approach appeared in Zhao and Tsiatis (1999) for obtain-
ing improved estimators of mean QAL, and in Bang and Tsiatis (2002) for median
regression of medical costs. We called this approach the Best-Coefficient approach.
Our second strategy is to use @Q;(u) in place of E{Q;|V;¥(uv)} in the formula for
eerp{Vi (u)}, i.e. we choose

e{Vi'(w)} = hZ){Qi(w) — 9(8,Z)} = Dj (u).

The corresponding estimating equation, named the improved estimating equation,
has the following form:

n
SIMP

ph+ 3 [ Dt — Gt =0 ()

i=1 K

Our last strategy for improving efficiency is to estimate E{Q;|V.¥ (u)} by regressing

Aig("g)(”) on observed covariates, using only those observations with X; > u (Robins

and Rotnitzky, 1992). The resulting estimating equation will be in the same form as
the improved estimating equation except that Q;(u) is replaced by the estimate of
E{Q;|V;¥ (u)} from the regression approach.

Extended simulation studies were carried out examining the efficiency of these
different approaches under different simulation scenarios. We concluded that the
improved estimator performs the best among these different approaches. The details
are shown in the attached manuscript.



c. Key Research Accomplishment

1.

I have gained knowledge on how to obtain the utility coefficients for quality
adjusted survival time.

. I have a better understanding of the general representation theory for missing

data process.

. I have examined different estimators for the survival functions of QAL.

. T have compared different test statistics for testing equality of survival functions

of QAL, for two groups and more than two groups.

. T 'have derived the most efficient estimating equation for the regression problem

of the mean QAL and obtained an improved estimating equation which is more
efficient than the simple weighted estimating equation.

d. Reportable outcomes

1.

I was an invited speaker for the Joint Statistical Meetings, August 3-7, 2003, San
Francisco, CA. My talk was titled “Statistical Inference for Quality-Adjusted
Survival Time”.

I gave a short course entitled “Statistical Inference of Quality Adjusted Life-
time” in International Chinese Statistical Association (ICSA) 2005 Applied
Statistics Symposium at Washington, DC on Saturday, June 19, 2005.

Pandya, K.J., Morrow, G.R., Roscoe, J.A., Zhao, H., Hickok, J.T., Pajon,
E., Sweeney, T.J., Banerjee, T.K., Flynn, P.J. “Gabapentin for hot flashes in
420 women with breast cancer: A randomized double-blind placebo controlled
trial”, 2005, Lancet, 366, 818-824.

Hickok, J.T., Roscoe, J.A., Morrow, G.R., Bole, C.W., Zhao, H., Hoelzer,
K.L., Dakhil, S.R., Moore, T., Fitch, T.R. “Serotonin receptor antagonists are
no better than prochlorperazine for control of delayed nausea (DN) caused by
doxorubicin: A URCC CCOP randomised study of 691 patients”, 2005, Lancet
Oncology, 6(10): 765-772.

. Wang, H. and Zhao, H. “Regression Analysis of Mean Quality-Adjusted Life-

time with Censored Data”. Revision Submitted.
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e. Conclusions

I have benefitted tremendously from the support of this grant. With the guaranteed
research time, I have studied thoroughly the problem of making inference on quality
adjusted lifetimes. I believe the research problem I have been working on is of great

importance to breast cancer studies.
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Regression Analysis of Mean Quality-Adjusted Lifetime
with Censored Data

Hongkun Wang*
Division of Biostatistics and Epidemiology, Department of Public Health Sciences,
University of Virginia, Charlottesville, Virginia 22908, U.S.A.
email: hkwang@Qvirginia.edu
phone: (434)924-8514 fazx: (434)243-5787

and
Hongwei Zhao

Department of Biostatistics and Computational Biology, University of Rochester,
601 Elmwood Avenue, Box 630, Rochester, New York 14642, U.S.A.

SUMMARY

In clinical trials of chronic diseases such as AIDS, cancer or cardiovascular
diseases, the concept of quality-adjusted lifetime (QAL) has received more and
more attention. In this paper we consider the problem of how the covariates
affect the mean QAL when the data are subject to right censoring. We allow a
very general form for the mean model as a function of covariates. Using the idea
of inverse probability weighting, we first construct a simple weighted estimating
equation for the parameters in our mean model. We then find the form of the
most efficient estimating equation, which yields the most efficient estimator for
the regression parameters. Since the most efficient estimator depends on the
distribution of the health history processes, and thus cannot be estimated non-
parametrically, we consider different approaches for improving the efficiency of

the simple weighted estimating equation using observed data. The applicability
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of these methods is demonstrated by both simulation experiments and a data

example from a breast cancer clinical trial study.

Key words: Counting process; Estimating equation; Martingale process; Qual-

ity of life; Survival analysis.

1 Introduction

In studies that evaluate new therapies for chronic diseases such as cancer, AIDS or
cardiovascular diseases, extending overall survival time may not be the only goal.
Improving patients’ quality of life is also important. Quality-adjusted lifetime
(QAL) is a measure which combines patients’ quality of life and survival time
together and provides a useful summary for evaluating the treatment effect.

Quality adjusted lifetime has been studied by Goldhirsch et al. (1989), Glasziou
et al. (1990) and Gelber et al. (1995). In their work, a patient’s health history
was partitioned into different health states, e.g. toxicity state during cancer treat-
ment, period of good health, and disease relapse state. Each state was assigned a
utility coefficient, usually ranging from 0 (death) to 1 (good health). The QAL,
also called Quality-Adjusted Time Without Symptoms and Toxicity (Q-TWiST),
is defined as the linear combination of the utility coefficients and the times spent
in each health state. In a more general setting, the QAL is simply defined as the
integration of utilities over a subject’s survival time.

In most clinical trials, patients enter the study over a period of time, and we
cannot always observe the QAL for every patient due to loss to follow-up and

study termination. The inference on QAL thus has to be made using censored



data. Censoring poses a unique problem for making inference on QAL, since even
though we are willing to assume that censoring is independent of the health history
process, the censored QAL is often correlated with the potential uncensored QAL
due to the induced informative censoring problem (Gelber et al., 1989). For
example, people with poor quality of life will accrue QAL slowly, and when they
are censored, they will have small censored QAL as well. Much research has
been done on estimating the mean QAL (e.g., Glasziou et al., 1990; Gelber et al.,
1991; Zhao and Tsiatis, 2000), or the survival distribution of QAL (e.g., Zhao and
Tsiatis, 1997; Zhao and Tsiatis, 1999; Van der Laan and Hubbard, 1999) from
censored data. However, in a real application, if is often of our interest to know
how covariates affect the mean QAL.

An example that illustrates the use of regression models for QAL came from
clinical studies conducted by the International Breast Cancer Study Group (IBCSG).
The IBCSG Trial V (Cole et al., 1993) was a randomized clinical trial investigating
two treatments for the node-positive breast cancer: short duration chemotherapy
(one month) and long duration chemotherapy (six or seven months). One thou-
sand two hundreds and twenty nine patients were enrolled in the study with 413
patients randomized to the short term chemotherapy and 816 patients randomized
to the long term chemotherapy. The median follow-up for the study was seven
years. Six covariates were recorded from each patient upon enrollment in the trial,
which include age, treatment, tumor size, tumore grades (medium or high), and
number of nodes involved. It was of interest to learn how patients’ mean QAL
might dependent on these prognostic factors.

Different approaches have been proposed for the regression problems of QAL.

Cole et al. (1993) used a partitioned health state model and fitted Cox propor-



tional hazards regression models for each transition time from the start of the
study to the end of different health states. The mean QAL corresponding to a
specific covariate value can be obtained by integrating the survival curves for that
covariate value. With this approach, however, one cannot directly assess the co-
variate effects on mean QAL from the regression parameter estimates. In order
to know how a covariate affect mean QAL, one has to plug in different values for
this covariate while fixing other covariates at some population averages. Fine and
Gelber (2001) proposed an accelerated life model for the distribution of survival
and quality-adjusted survival time. However, their interests are the distribution of
QAL, not the mean QAL. The regression method related to mean quality-adjusted
lifetime data was mentioned in Bang and Tsiatis (2002), but no semi-parametric
efficiency study was performed.

In this paper, we will study the problem of regressing the mean QAL on
the covariates. We will investigate how to construct estimating equations for
the regression parameters and how to obtain more efficient estimators by using
the semi-parametric theory developed by Robins and Rotnitzky (1992). We will
assume a mean model for QAL, but will not make any additional assumption on
the underlying distribution of the health history process. Censoring is assumed
to be independent of the health history process. In the discussion section, we
will consider the situation when this condition is not met. Due to limited follow-
up time, we only consider QAL accumulated up to a time limit L, where L is
determined by the availability of data. The rest of this paper is organized as
follows. In Section 2, we describe the regression model and discuss methods for
obtaining efficient estimators for the regression parameters. It is followed by the

simulation experiments in Section 3. The breast cancer data example is analyzed



in Section 4 and finally, some concluding remarks are given in Section 5.

2 Estimating Equations for Regression Parame-
ters

2.1 The Regression model and Assumptions

For the 7th individual in the study, let the health history process be represented by
{Vi(t),t >0 i=1,---,n}. Denote V;7(t) = {Vi(u) : u < t}, the health history up
to time ¢. Let 7; be the survival time and ¢ be a known utility function mapping
Vi(t) to the interval [0, 1]. ¢ is assumed to be known for our purpose. In the final
section, we discuss how to handle the situation when ¢ is not known to us. The

ith individual’s quality-adjusted lifetime (QAL), denoted as @;, is equal to

Q= [ Vi)

Denote the ith individual’s censoring time by C;. Censoring is assumed to be
independent of the health history process V;(.). The distribution of C' is assumed
to be continuous and is denoted as K (t) = Pr(C > t). Because of censoring, we
can not make inference on QAL over the entire health history; we only consider
the QAL accumulated within a time limit L. Consequently, the survival time of an
individual will be truncated at L, that is, 7% = min(7, L). For ease of notation,
we still use T instead of T". We assume that Pr(C > L) > 0.

Let Z; denote the (p + 1) x 1 vector of covariates associated with the ith
individual, with the first covariate being the constant 1. The observed data for n
individuals are the independently and identically distributed random quantities:
[Xi = min(T;, G;), A; = I(T; < Cy),Vi(1),0 <t < X;,Qi(u) = fg ¢{Vi(t)}dt,u <
X;, Zi,i =1,---,n]. According to this definition, @; = Q;(min{7T;, L)}.



We assume that the mean QAL depends on the covariates in a very general

form:

E(Qi|Z:) = 9(B, Zy), (2.1)

where § is a (p + 1) x 1 vector of parameters of interest. Special cases include
9(B,Z;) = B'Z;, a linear regression model and ¢(8, Z;) = g(5'Z;), a generalized
linear regression model. Our goal is to make inference about 3 in the mean model
(2.1) for some pre-specified function g from the observed censored quality of life

and survival data.

2.2 Simple Weighted Estimating Equation

If complete data are observed, a consistent estimator B for 8 in the mean model

(2.1) can be obtained from the following estimating equation:

i=1
where h(Z;) is (p + 1)-dimensional vector of functions of Z;, and the superscript
F represents models for full data. From the semi-parametric theory (Robins and

Rotnitzky, 1992), we know that the most efficient estimating equation for complete

data case is the one with

Bl Bo>s

hfff(Zi) = Var(Q;|Z;) !
where (g is the true value of the parameters.
In the special case of a linear model where g(8, Z;) = f'Z; and Var(Q;|7;) is
assumed to be a constant, the most efficient estimating equation is obtained by
setting hl}(7Z;) = Z;, and hence
n

Sf,eff(ﬁ) =Y Zj(Q:i—B'Z)=0.

i=1



This equation is the same as the ordinary least squares estimating equation for
the linear regression models.

When censoring is present, (); cannot be observed for everybody so the estimat-
ing equation (2.2) cannot be used. However, using the idea of inverse probability
weighting, which was originally proposed by Horvitz and Thompson (1952), we
can construct a simple weighted estimating equation for 8 in our mean model
(2.1) with censored data:

5u(8) = Yo o h(Z){Q: — 9(8, 2} =0,
K(Ty)

i=1

where A; = I[(T; < C;), K(T;) is the survival probability for the censoring variable
C at time 7;. The consistency of the simple weighted estimating equation is shown
by

A,
K(T3)

h(?z) {Qi—9(B,Z;)}E {I(CZ- > T,)|VZH()’ Zz}]

hZ)EHQ: — 95, z»m]

.M:'

E{S.(8)} = E|)_El

WZ){Q: — g(ﬂ,za}MH(.),zi]]

S
Il
—_

I
t
o
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S
Il
—_

~—

I
=
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Since K(T;) is not known to us, we can estimate it using the Kaplan-Meier esti-
mator K (T;) (Kaplan and Meier, 1958). Hence, our simple weighted estimating
equation becomes

S =% o

h(Zi){Qi — 9(B, Zi)} = 0. (2.3)

In the special case when ¢(8,7;) = ('Z; and h(Z;) = Z,;, the estimating

equation (2.3) has a closed-form solution for 5 given by

BT = {znj iz@?}_ {znj %QZZZ} ,

= K(T) =1 K(T;
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where we use the notation a®? = aa', a®b = al/, for vectors a and b.
The simple weighted estimator is easy to calculate, however, only the QAL for
the subjects with observed failures are used in the estimating equation. Therefore,

it cannot be efficient.

2.3 Efficiency Study

To develop the theory on efficiency study of the estimating equations, we use the
counting processes and the associated martingale theory as described by Fleming
and Harrington (1991). Let the filtration F(u) be the increasing sequence of

o—algebras generated by
o{I(Cy < 1)t S wI(Ty < 2), V' (2),0 S w < 00, Zyyi = 1,....,n}.

We consider the martingale process MY (u) = NF(u) — [ \9(t)Y;(t)dt, where
NE(u) = I(X; <u, Ay = 0), Y;(¢) = I(X; > t), A9(t) = limy07 Pr(t < C <
t+ h|C >t,T >t) is the hazard function for the censoring distribution.

From the semi-parametric theory for missing data processes developed by
Robins and Rotnitzky (1992) and Robins et al. (1994), the influence function
for the estimating equation for any regular asymptotic linear (RAL) estimators of

Bo can be written as

D = [0 = 60ty Ut [ v ) = Gletv ) ] R Mo

where D! = h(Z;){Q; — g(B, Z;)} is the influence function for the complete data,
GW,u) = E{W,I(T; > u)}/S(u) for any random variable or functional W,
S(u) = Pr(T > u), and e{V,# (u)} is any (p+ 1)-dimensional vector of functionals
of the health history V;” (u). It should be noted that the influence function for the
simple weighted estimating equation (2.3) is simply the first two terms of (2.4)
(Zhao and Tsiatis, 1997, equation A.7).



From Robins and Rotnitzky (1992), the most efficient estimating equation is

obtained by choosing

eerr{Vi™ ()} = BAD{ |V (w)} = hegs(Z)E{D:| V" (u)},

where D; = Q; — g(8, Z;), and

hs(Z) = {Vax(@1Z)+ P(Z)} 55016, Z) s
with
P(ZZ-):E[O e Var DV ), ¥iw) = 1,22 (25)

From the above results, the most efficient estimating equation can be formed

by
Snerf(B X::l;{(—ff Z/ {eers — G*(ecss, )}%=0, (2.6)

where G*(W,u) = ¥, WiYi(u)/Y (u) is a consistent estimator for G(W,u), for
any functional W.

In theory, the asymptotic variance of 3 from solving (2.6) should achieve the
semi-parametric efficiency bound, which means that 3 from (2.6) has the smallest
variance among the class of all regular asymptotically linear estimators. How-
ever, it is not useful to use (2.6) for data analysis, since e.s; and h.s; depend
on the unknown true population parameters which are difficult to estimate non-

parametrically.

2.4 Improved Estimating Equation

Due to the difficulty in obtaining the most efficient estimating equation non-

parametrically, we wish to find an estimating equation which can be obtained



from the observed data, and which can be more efficient than the simple weighted
estimating equation for any choice of h(Z). In the subsequent section, we will

discuss the issues of choosing h(Z).
2.4.1 The Best-Coefficient Approach

We first consider a method for obtaining the improved estimating equation, which
is similar to the approach appeared in Zhao and Tsiatis (1999) for obtaining im-
proved estimators of mean QAL, and in Bang and Tsiatis (2002) for median re-
gression of medical costs. We will call this approach the Best-Coefficient approach
and denote it as BC.

For any chosen e{V; (u)}, if we multiply the third term in (2.4) by a constant
r

dME (u

D= [T (o= ety U [T [ev ) - ey, up] U

K(u)
where T is equal to Cov(Wy, Wy)Var(Ws) !, with W; and W, being the second

V) o 7)

and third terms in (2.4), i.e

Wi = [0f - Gon Y,

dME (u)
K(u)

then the variance of this influence function (2.7) will always be smaller than that

Wo = [ eV ) - Gle(v (), w}]]

of the simple weighted estimating equation. In practice, I' is not known, so it
has to be estimated from available data, which will result in some additional
variability for finite sample sizes. We will examine its finite sample performance
in our simulation study.

We can derive an explicit formula for the BC estimator in the special case

when ¢(8,Z) = B'Z and h(Z) = Z. If we choose e{V:¥ (u)} = Q;(u), for example,

10



we can get

BPC = AT Ay, (2.8)
where
A= 3 TTQG) - QUNIZ - Qu,
4y = z ?ﬁz)@zmmu{m) Q1 J{ZQ - Q).
W, = i [ 00 - 6.
Jx.v) = X / (GH(X - Y,u) — C*(X, u)G*(Yu)}dI](V;()Z), (2.9)

for any functionals X and Y. If X or Y involves @);, then G* will be replaced by

the G function

. 1 1 &AXI(T >u)
&= wE T k@)

The detail of the derivation is given in the Appendix.

2.4.2 The Improved Estimating Equation with I' = 1 and Q;(u) in Place
of B{Q:|V}" (u)}

Our second strategy is to choose I' = 1, and use @;(u) in place of E{Q;|V. (u)}

in the formula for e.;;{V;# (u)}, i.e. we choose

AV ()} = h(Z){Qi(u) — g(8, Z:)} = Di(u).

The corresponding estimating equation, named the improved estimating equation

and denoted as IMP, has the following form:

n
SIMP

Ht Z/ooo dl]?(ng) [D}'(u) — G*{D"(u),u}] = 0. (2.10)

i=1
This estimating equation (2.10) is not guaranteed to be always more efficient

than the simple weighted estimating equation (2.3). However, due to the usual

11



correlation between Q;(u) and E{Q;|V;” (u)}, we expect this estimator to perform
well in most realistic settings.
In the case when ¢(8,7) = 8'Z and h(Z) = Z, this improved estimator has

an explicit form BIMP = C['C,, where

: L ANE ) ELLOIT
o = i K(u)} X R

o aQ QZ el z;uQJ( W7
CZ‘Z{ o3 d )7 R A

2.4.3 The Estimating Equation Using Regression Approach

Our last strategy for improving efficiency is to choose I' = 1 and estimate E{Q;|V;% (u)}
by regressing = QE )( 4 on observed covariates, using only those observations with
X; > u (Robins and Rotnitzky, 1992). The resulting estimating equation will
be in the same form as (2.10) except that Q;(u) is replaced by the estimate of
E{Q;|V#(u)} from the regression approach.
To implement this idea, we may choose a linear regression model (LRG), re-
AiQiK(u)

ressin on some covariates that are predictive of QAL; or we may use
g & TK(T)

a generalized additive model (GAM) (Hastie and Tibshirani, 1990; Van der Laan

fAQz ()

and Hubbard, 1999), which accommodates a nonparametric regression o ®(T)

on some functions of the health history process V% (u), e.g. Q;(u). We will com-

pare the performance of these choices in our simulation studies.

2.5 Choice of h(Z2)

Compared to the best choice of h(Z) for the complete data case

99(8, Zi)

heff( ) Var(Qi|Zi) 08 |/30’

12



the optimum choice of h(Z) for the incomplete data case is

hes(Zi) = {Var(Qi|Z:) + P(Z:)} ' 229(8, Zi) 50,

9
op
where P(Z;) is defined as (2.5). It is equivalent to down-weight the influence
of Var(Q;|Z;), due to the added uncertainty about the variance of @); given Z;
for the censored observation. Since it is harder to estimate the second moment
than the first moment given the high dimensional health history process, and
secondly, using an incorrect model could potentially increase the variability of the

estimating equation, we choose not to attempt to estimate P(Z;) and use instead

the best choice of h(Z) for the complete data case.

2.6 Variance Estimators for Regression Parameters

In this section, we derive the variance estimators for the regression parameters
in our various estimating equations. Suppose [ is the solution to an estimating
equation and [y is the true value of the parameters. From Taylor’s expansion, we

have
Var{n?(8 - fo)} = I'Li;" (2.11)

where
I, = Var{n=25,(80)},

-1 aSn(BO) ag(ﬂOa ZZ)}
op op '
In the special case when ¢(8,Z) = 5'Z and h(Z) = Z, we have

= E{h(%)

IO = —]1mn_>oon

Iy =EZ%%.
Based on the general influence function (2.4), I; is equal to

Var{ D(530) }+Var{W:(Bo) }+Var{Wa(Bo)} —E{W1(80) @W2(80) } —E{W2(Bo) @W1 (o)},

13



where D?(8;), W1(5), and Wy (5,) are defined similarly as D, Wy, and W, with
true parameters 3, plugged in.
Using derivations similar to those in the Appendix, we can show that for large

n, I, the asymptotic variance of n_%Sn(ﬁo), can be estimated by

> R, ) (50)} 2 + J{D" (Bo)® D" (Bo)} + J[e Vi (u) }@e{ V" (u)}]

- J[Dh(ﬁo)®{€{ViH( )} = Jl{e{Vi" (u)}@D" (50)] (2.12)

where

J(X®Y) = / (G*(X®Y, 1) — G*(X, u)G(Y, u)}dg C(?,

u)
for any vectors of functionals of X and Y. Similar as the definition for J(X - Y),
G* will be replaced by the G function if X or Y involves the random variable Q;.

The variance of the simple weighted estimating equation (2.3) is just the first
two terms in (2.12). Due to the special coefficient used in the BC estimating

equation (2.7), its variance can be easily shown to be

Var{n=28)""(5)}

JIDM(Bo)@{e{ V¥ () Y[ T[e{Vi" (w)y@e{ V¥ (u) I T[{e{ V¥ (u)}@ D" (50)].
3 Simulation Experiments

In this section we conduct some simulation experiments to evaluate our proposed
estimating equations for the parameters in our regression models. Similar to the
IBCSG Trial V example which is to be presented in the next section, we consider
patients entering the study first experience toxicity for a certain time, then a
period of good health (TWiST), then their disease relapse followed by death. We

use TOX to represent the time from the treatment initiation to end of toxicity,

14



TR the time from treatment initiation to disease relapse, and OS the time from

treatment initiation to death. The quality adjusted lifetime is defined as:

Q = qrox *TOX +TWiST + qrrr * REL

where qrox is the utility coefficient for TOX, ggrgr the utility coefficient for the
REL (the period between disease relapse and death, The utility coefficient for
TWIiST is assumed to be 1, and grox = qrer = ¢ = 0.5.

We generate 5,000 simulations, each consisting of two groups of censored health
status data with sample sizes varying from 100 to 400 for each group. Two
scenarios are considered here. In the first scenario, TOX is uniformly distributed
on [0, T1] for group 1 (77=60) and uniformly distributed on [0, T%] for group 2
(T5=80); TR is exponentially distributed with hazard A\; = 1/130 for group 1
and hazard Ay = 1/90 for group 2, and both are truncated at L; = 81. OS is
exponentially distributed with hazard A3 = 1/140 and truncated at L, = 100 for
both groups. The censoring variables for both groups are uniform on [70, 116] and
are independent of TOX, TR and OS, which results in the amount of censoring to
be about 35% for group 1 and 36% for group 2. For each group, if TR is greater
than OS, we set TR=0S. Similarly, if TOX is greater than TR, we set TOX=TR.
The true mean QAL for group k (k=1,2) is

1

1 — —(Ap+A3)Te\ _
(1-e W

(1 _ e—(/\k-l-)\s)Ll )}

1—¢q)x{———
( q) {()\k; + )\3)2Tk
1
(- (1- ),
Az
Plugging in the parameter values, we can obtain that the true mean QAL is

47.91 for group 1 and 43.89 for group 2. Using a linear regression model with

treatment as a covariate, and group 2 as the reference group, the intercept and
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slope parameters in our regression model are 43.89 and 4.02, respectively. In the
second scenario, group 2 is generated the same way as group 1 in the first scenario,
resulting in an intercept of 47.91 and a slope of 0.

We calculate the estimates for the intercept and slope, using the WT equa-
tion (2.3), the BC equation (2.8), the IMP equation (2.10), and the regression
method. In the regression method, we consider 3 different approaches to estimate

AQiK(u
£ 9 (u)

E{Q;|V:#(u)}: 1), using the sample average o oy only from observations

with X; > u, conditioning on the treatment at each time u (denoted as AVE); 2),

A Qi K (u)
K(Ty)

fitting a linear regression model for only from observations with X; > u,

combining all the censoring points and using treatment as the covariate (denoted

as LRG); 3), fitting a generalized additive model for Af{)é)(u) only from observa-
tions with X; > u by smoothing on the Q;(u) (denoted as SM).

Table 1 and Table 2 are results from the two simulation experiments, respec-
tively. The sample standard errors (SSE), the estimated standard errors (ESE),
and the sample coverage probabilities (CP) of the true parameters by the 95%
confidence intervals of those estimators are given. We also calculate the estimates
if we use the true E{Q;|V:¥(u)} (denoted as TrueE), since in the simulation we
know the true distributions hence E{Q;|V;” (u)} can be obtained. However, in
practice, this estimator cannot be used since we do not know the true expectation
of @; given the health history process V; (u).

From the results of our simulation studies, we can see that the biases for all the
estimators are rather small, indicating that all the estimating equations give con-
sistent estimates of the regression coefficients. The empirical sample variances are

very close to the estimated variances from formula (2.12). The estimators LRG

and AVE have bigger sample standard errors than the simple weighted estimator.
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Using the smoothing approach SM does not improve the efficiency. As expected
from the theory, plugging in the true expectation gives us the most efficient esti-
mator. The IMP estimator performs the best among all the estimators not using
the true expectation. When the sample size is 100, the coverage probability for
the BC estimator is not very accurate, but it improves considerable as sample size
increases. The coverage probabilities for all other estimators are very close to 0.95

even for small sample sizes.

4 Application

In the IBCSG Trial V, each patient experienced in sequence three health states:
TOX (toxicity), TWiST (perfect health), and REL (disease relapse). We illustrate
our methods with the quality of life coefficients grox = qrer, = 0.5 and the time
limit L = 84 (months). The amount of censoring is 29.3%. Similar to Cole et
al. (1993), we consider six covariates recorded from each patient upon enrollment
in the study: treatment group (0= short duration, 1=long duration); tumor size
(O=less than 2 cm, 1= at least 2 cm); logarithm of age; medium tumor grade
(0=not medium grade, 1= medium grade); high tumor grade (0=not high grade,
1= high grade); number of nodes involved (0=fewer than 4, 1 =at least 4). As in
Cole et al. (1993), 94 patients are removed from the data due to missing values
for tumor grade.

We first considered a linear model with the six covariates and the interaction
terms between treatment (treat) and the other covariates — tumor size (tsize),
medium tumor grade (mgrade), high tumor grade (hgrade), and number of nodes
involved (nodegrp). However, none of the interaction terms are significant thus

they are excluded from our final model. We calculate the estimators using the W'T
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estimating equation (2.3), the IMP estimating equation (2.10), the BC estimating
equation (2.8) and other regression approaches for estimating E{Q;|V; (u)}: the
linear regression approach (LRG), the sample average approach conditioning on
the treatment (AVE), and the generalized additive model with @Q;(u) being the
only regressor in the smoothing model (SM). Table 3 shows the results.

Concentrating on the covariates estimates and their standard errors first, we
see that the AVE approach which estimates the expectation of Q;|V; (u) by using
the sample average for each treatment group at each censoring time does not per-
form well. The estimated standard error is bigger than all other approaches. The
LRG approach, which is similar to AVE but combines all the censoring points
together, performs slightly better. For some covariates SM approach produces
a smaller standard error, but it is bigger for other covariates. BC estimator is
consistently better than W'T', but the improvement is not very big. The best
performing estimator is the IMP estimator, similar as what we see in the sim-
ulation study. We have also considered two other generalized additive models:
smoothing @;(u) with both treatment and @;(u) as the regressors in the model,
and smoothing Q;(u) with all the six covariates and Q;(u) as the regressors in the
model. We found out that adding more regressors in the smoothing method did
not make much difference, so the results from those two models are not included
in the Table 3.

Using the estimates from the IMP approach, we find that all six covariates are
significant. A subject who is older, who has smaller tumor size, smaller number
of nodes involved, lower tumor grade, and who is on the long duration arm,
has a longer expected quality-adjusted lifetime. This finding agrees with the the

description provided in the caption of Table 1 of Cole et al. (1993). Similar as
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Cole et al. (1993), a sensitivity analysis can be carried out with varying values
of grox and qgrgr. For any fixed values for covariates, a treatment option can be

chosen based on different quality of life utility values.

5 Conclusion

In this paper we have developed methods on how to estimate the covariate effects
on the mean quality-adjusted lifetime, and how to obtain more efficient estimating
equations. The theory developed by Robins and Rotnitzky (1992) provides the
key to finding the form of the most efficient estimating equation, however, it is a
function of the health history and cannot be estimated non-parametrically. We
examined different approaches for obtaining consistent estimators for regression
coefficients.

We have assumed that the quality of life coefficient ¢ is fixed in our methods.
However, in a real application, ¢ is often not known and has to be estimated
from QOL questionnaires. A lot of research has been devoted to this area. There
are instruments developed which can translate health states into quality of life
coefficients. In the cases similar to our example when the number of health states
are limited, we can perform a sensitivity analysis and find out the treatment
advantages for each set of utility values.

The simulation studies show that the best performing estimator is the IMP
estimator using @;(u) in place of E{Q;|V;# (u)}. The estimators using regression
method (linear regression, or additive models) do not perform well. The BC
estimator should always have smaller variance than the simple weighted estimator
from the large sample theory, however, the improvement is not very big from our

simulation studies.
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We have assumed that censoring is independent of the health history process.
If this assumption is not true, and censoring depends on some known covariates,
we can accommodate this situation by fitting a Cox proportional hazards model
to estimate the censoring distribution. If the Cox regression model is true, we can
still get consistent estimators for the regression coefficients.

From Robins and Rotnitzky (1992), h(Z) can be optimized to improve the
efficiency of the estimating equation. However, optimizing h involves estimating
the second moments of ); which will introduce some extra variability. How much
more efficiency we may gain if we try to obtain the optimized h will be a subject

of future research.
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APPENDIX
The Derivation of ,BBC

In the special case when ¢g(3,Z) = 'Z and h(Z) = Z, e{V (u)} = Qi(u), we
can construct the following estimating equation based on the influence function
(2.7):

S2°6) = SO +FY /LdNC Qi(w) = GHQU),ull, (A1)

where I' is a consistent estimator for I' = Cov(W;, W,)Var(W,)~! and can be
obtained as follows.

Since
A (u)
K (u)?

Var(15) = B [ [Qi(u) — G1Qw), uYilw) . e,

it can be estimated consistently by

) = L[S0 - 6o uhvi)
nJo = K (u)?Y (u)
= %/) [é*{Q(U)2,U}_G*{Q(u)’u}Q]dI]{y(u(;:)

= J{Q)-Q)},
where J(X -Y) for any random variables X and Y is defined in (2.9). Next,

A (u)

K du

Cov (W1, W2) = E/OL{D? — G(D", u)}Qi(u) — G{Q(u), u}]I(T; > u)

A (u)
K () du

_ /0 " SWIG12QQ(u), u} - GLQu), u}G(2Q, u)) ?(fff)) du

- [ S@IGEZQM). 1} - G WGHQ), sl e dus

= B[ Q) - G{Qw, w17 > )
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It can be estimated consistently by

Cov(Wi, Wy) = % /OL[G'{ZQQ(U),u} _@(ZQ,U)@*{Q(U),u}]dév(u(;)
o 670w - Gz wéneu T

= J{ZQ-Q)} - J{Z%*- Qu)}B
Using these results, the estimating equation (A.1) can be written as
SaC(8) = ST (B) + Wa x J{Q(u) - Qu)} ™"+ [J{ZQ - Q(w)} = J{Z** - Q(u)}B],

from which the BC estimator can be obtained easily and shown in (2.8)
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List of tables:

Table 1: With treatment effect. Bias, sample standard errors (SSE), estimated
standard errors (ESE), coverage probabilities for 95% confidence intervals (CP),
for the intercept and slope for different estimators.

Table 2: No treatment effect. Bias, sample standard errors (SSE), estimated
standard errors (ESE), coverage probabilities for 95% confidence intervals (CP),
for the intercept and slope for different estimators.

Table 3: Estimates for the regression coefficients and their standard errors
(ESE), for different estimators for the breast cancer example.
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Table 1: With treatment effect. Bias, sample standard errors (SSE), estimated
standard errors (ESE), coverage probabilities for 95% confidence intervals (CP),
for the intercept and slope for different estimators.

Sample Intercept Slope

Size Estimator  Bias SSE ESE CP Bias SSE ESE CP

100 WT -0.052 2.942 2.959 0.947 -0.044 4.767 4.719 0.939
IMP 0.023 2418 2.439 0.945 0.040 3.639 3.662 0.945
BC -0.363  2.958 2.894 0.927 -0.078 4.790 4.597 0.926
AVE -0.038  4.237  4.226 0.953 0.091 7.898 7.849 0.947
LRG 0.056 3.240  3.274 0.948 -0.064 5.558 5.556 0.942
SM 0.064 3.001 2.986 0.944 -0.019 5.062 5.071 0.943
TrueE 0.119 2.382 2.405 0.946 -0.086 3.526 3.554 0.945

200 WT -0.046  2.094  2.091 0.950 -0.041 3.321 3.334 0.950
IMP -0.017  1.715 1.727 0.954 -0.008 2.582 2.592 0.951
BC -0.195 2.077  2.033 0.941 -0.061 3.337 3.278 0.942
AVE -0.017  2.844 2912 0.953 0.039 5.329 5.386 0.952
LRG 0.015 2.310 2.304 0.950 -0.051 3.886 3.900 0.951
SM 0.053 2.266 2.109 0.947 0.013 3.597 3.605 0.950
TrueE 0.099 1.684 1.702 0.949 -0.062 2.502 2.514 0.951

400 WT -0.020 1.502 1.497 0.952 -0.035 2.441 2.435 0.954
IMP 0.004 1.237 1.221 0.949 -0.004 1.851 1.843 0.954
BC -0.094 1.488 1.456 0.947 -0.053 2.317 2.309 0.948
AVE 0.003 2.045 2.045 0.950 -0.030 3.760 3.775 0.947
LRG 0.007 1.612 1.599 0.953 -0.045 2.807 2.798 0.953
SM -0.026 1.547 1.535 0.954 0.004 2.638 2.643 0.951
TrueE 0.087 1.213 1.203 0.950 -0.043 1.803 1.791 0.952
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Table 2: No treatment effect. Bias, sample standard errors (SSE), estimated
standard errors (ESE), coverage probabilities for 95% confidence intervals (CP),
for the intercept and slope for different estimators.

Sample Intercept Slope

Size Estimator  Bias SSE ESE CP Bias SSE ESE CP

100 WT -0.067  3.217  3.192 0.947 -0.071 4.974 4.906 0.944
IMP 0.019 2.649 2.648 0.948 -0.064 3.797 3.808 0.946
BC -0.423  3.151 3.006 0.935 -0.052 5.037 4.830 0.931
AVE 0.038 4.539  4.584 0.957 -0.077 8.099 8.163 0.957
LRG 0.040 3.552  3.534 0.946 0.068 5.815 5.768 0.946
SM 0.092 3.617  3.217 0.941 -0.055 5.890 5.252 0.945
TrueE 0.018 2.601 2.609 0.947 -0.062 3.660 3.698 0.948

200 WT -0.041 2.274  2.260 0.946 0.014 3.537 3.464 0.946
IMP 0.015 1.867  1.875 0.950 0.007 2.752 2.693 0.945
BC -0.201 2.205 2.151 0.940 0.013 3.508 3.439 0.932
AVE 0.022 3.162  3.174 0.951 0.032 5.595 5.632 0.954
LRG 0.014 2.503 2.496 0.947 0.013 4.123 4.063 0.945
SM 0.013 2287 2276 0.952 -0.010 3.749 3.703 0.947
TrueE 0.014 1.836 1.847 0.951 0.041 2.657 2.613 0.952

400 WT -0.013 1.584 1.598 0.949 0.007 2.412 2.405 0.946
IMP -0.006 1.333 1.327 0.952 0.004 1.896 1.906 0.950
BC -0.093 1.531 1.528 0.944 0.008 2.394 2.387 0.943
AVE -0.003  2.227  2.218 0.948 0.020 3.933 3.928 0.952
LRG 0.012 1.740 1.763 0.949 -0.001 2.847 2.865 0.947
SM 0.009 1.674 1.669 0.951 0.007 2.639 2.644 0.952
TrueE -0.007  1.313 1.307 0.949 0.009 1.837 1.849 0.950
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Table 3: Estimates for the regression coefficients (in months of quality-adjusted
time) and their standard errors (ESE), for different estimators for the breast
cancer example.

Estimator Intercept log(age) tsize nodegrp mgrade hgrade treat
(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

WT 24.439 13.579  -5.381 -14.315 -9.118 -18.498 5.536
(15.546)  (3.831) (1.873) (1.711) (2.241) (2.411) (1.750)

IMP 23.436 13.532  -4.499 -14.372 -7.824 -17.489 4977
(13.646)  (3.355) (1.734) (1.547) (2.170) (2.296) (1.579)

BC 25.079 13.486  -5.439 -14.395 -9.137 -18.570 5.469
(15.477)  (3.819) (1.867) (1.705) (2.239) (2.405) (1.745)

AVE(trt) 50.121 6.501 -2.317  -16.260 -6.200 -18.543 4.848
(16.663)  (4.097) (2.274) (1.994) (3.196) (3.253) (2.027)

LRG 22.976 14.072  -5.351 -14.078  -9.829 -18.955 5.453
(15.687)  (3.819) (2.138) (1.789) (3.019) (3.093) (1.851)

SM(culU)  17.598 15.035 -4.657 -13.880 -8.702 -17.636 5.212
(14.667)  (3.585) (1.950) (1.675) (2.616) (2.712) (1.708)
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